09.02.2011
Großflächige Lagen aus Glas- oder Kohlefasern von bis zu rund 130 Quadratmetern müssen faltenfrei in eine Form drapiert werden, um dann mit Kunstharz verfestigt und später mit anderen Elementen verbunden zu einem perfekten Flügel zu werden. Ein Forschungsprojekt am Institut für integrierte Produktentwicklung (BIK) der Universität Bremen soll den Rotorblattherstellern diese schwere Arbeit künftig erleichtern.
Mit ihrem Projektantrag überzeugten die Bremer Forscher das Bundesumweltministerium. Im 5. Energieforschungsprogramm fördert es die Wissenschaftler vom Uni-Fachbereich Produktionstechnik mit 600.000 Euro. Das Projekt läuft über 30 Monate und umfasst insgesamt rund 950.000 Euro. Als Projektpartner ist der Spezialist für technische Textilien SAERTEX GmbH & Co. KG mit im Boot sowie als BIK-Partner in diesem Projekt der Rotorblatthersteller PN Rotor GmbH.
Ein großes Vorhaben, ein langer Name: „Verfahren zur preform-Herstellung durch ebene Ablage für ein räumliches Bauteil als Basis einer automatisierten Prozesskette zur Rotorblattfertigung“ heißt das Projekt, oder kurz einfach nur „mapretec“. Sein Ziel ist es, die Produktion von Rotorblättern mithilfe neuer Fertigungssysteme weiter zu automatisieren. Rotorblätter werden hauptsächlich aus endlosfaserverstärkten Kunststoffen hergestellt. Durch die große Anzahl an verstärkenden Faserlagen sowie dem hohen zeitlichen und personellen Aufwand bei deren Drapierung ist die Fertigung sehr kostenintensiv.
Mithilfe von Computern, Sensoren und Preform-Technik zum optimalen Ergebnis
Ein Rotorblatt zum Beispiel für eine Windenergieanlage (WEA) in Deutschlands erstem Offshore-Windenergiepark „alpha ventus“ 45 Kilometer vor der Insel Borkum ist 56,50 Meter lang, wiegt 16 Tonnen und ist aus mehreren, unterschiedlich geformten Elementen aus faserverstärkten Verbundwerkstoffen zusammengesetzt. Die Elemente für WEA-Flügel bestehen aus bis zu 200 aufeinander geschichteten Lagen von Glas- und Kohlefasern, die jeweils mit Nähten zusammengehalten sind. Bei derartigen Lagen sprechen Fachleute von „Gelegen“. Die Gelege müssen in eine Form gebracht und danach mit Kunstharz verbunden und verfestigt werden. „Die Kunst besteht nun darin, die Gelege ohne Falten und unzulässige Verschiebungen möglichst schnell und präzise umzuformen“, sagt Projektleiter Dipl.-Wirtsch.-Ing. Jan-Hendrik Ohlendorf. Diesem Problem widmet sich das Projekt.
Jeder Anfänger, der schon einmal versucht hat, zwei Hosenbeine gleichzeitig zu bügeln und eine saubere Bügelfalte hinzubekommen, kennt das Problem: Trotz größter Anstrengung gibt es immer irgendwo ungewollte Falten, und die Kniffe sind nicht dort, wo sie hingehören. „Das darf bei den Gelegen für Rotorblätter nicht passieren“, sagt Ohlendorf. „Hier ist beste Qualität erforderlich, denn Ausfälle oder Reparaturen von Offshore-Windenergieanlagen sind extrem aufwendig.“
Während die Gelege beim Umformprozess heute noch manuell bearbeitet werden, sollen sie künftig mithilfe eines Systems automatisch in die richtige Form gebracht werden, und da liege die Lösung unter anderem in einer Kombination von automatisiertem Zuschnitt, automatisierter Ablage der Materialien und der Preform-Technik, sagt Ohlendorf. Anders beschrieben: Mithilfe der rechnergestützten Entwicklung (computer-aided engineering – CAE) werden Formen für die räumlich komplexen Teile definiert. Unterstützt von Sensoren steuern Rechner zunächst den Zuschnitt der Gelege, und danach werden diese auf derselben Arbeitsfläche gemeinsam in die gewünschte Form gebracht (preform). Quasi wie bei einem Nagelbrett zum Modellieren, das zum Beispiel den Eindruck einer Hand (hier Vorgaben durch ein digitales Modell) spiegelt.
„Um im Wettbewerb weiter bestehen zu können, brauchen wir neue Fertigungsverfahren“
„Der Markt fordert beste Qualität, deutlich mehr Schnelligkeit in der Produktion, und auch die Fertigungskosten müssen dringend reduziert werden“, sagt Prof. Dr.-Ing. Dieter H. Müller vom BIK. „Wenn Europa auf dem Feld der Windenergie und dem Bau von Windkraftanlagen seine Technologieführerschaft weiter behaupten und der stetig wachsenden Nachfrage gerecht werden will, müssen wir neue, bessere und effizientere Wege in der Produktion finden“, erklärt er. Die mapretec-Forschungen zielten auf die Gestaltung einer automatisierten Prozesskette zur Rotorblattfertigung sowie auf eine zeitnahe Umsetzung der Ergebnisse – und leisteten damit einen wichtigen Beitrag zum Erhalt der Wettbewerbsfähigkeit.
Quelle: Universität Bremen, mail@kontexta.de